
11/10/99 1

PILC:
Performance Enhancing Proxies

(PEPs)

46th IETF

draft-ietf-pilc-pep-xx.txt

John Border, Markku Kojo,

Jim Griner, Gabriel Montenegro

11/10/99 2

Presentation Outline

• Purpose of the draft

• Overview of the draft

– Types of PEPs

– PEP Mechanisms

– PEP Examples

– PEP Implications

• Status and next steps

11/10/99 3

Purpose of the Draft

• The purpose of this draft is different from the purpose of the other
PILC drafts. This draft is intended to document:

– What PEPs are and how they are implemented;

– What motivates their development and use for particular links;

– What the implications are of using them, especially with respect to
the end to end argument.

• The draft is not trying to define any sort of standards related to PEPs or
their use. It is just trying to capture “current art”.

• The draft is not trying to make recommendations for or against the use
of PEPs except by means of the implications of their use.

11/10/99 4

Types of PEPs

• PEPs can be classified by the layer at which they operate:

– Transport layer (e.g. TCP) versus application layer

• PEPs can be classified by the implementation distribution:

– A PEP implementation can be integrated into a single node.

• Example: A PEP which provides impedance matching between
wired and wireless links.

– A PEP implementation can be distributed between several nodes.

• Example: Two PEPs located at each end of a satellite link to
improve performance over the link.

11/10/99 5

Types of PEPs (Cont.)

• PEPs can be classified by their treatment of connections:

– A PEP implementation can assist connections without “interfering”
with their end to end flow

• Example: A PEP implementation which simply spaces TCP
ACKs to reduce traffic burstiness.

– A PEP implementation can split an end to end connection into
multiple connections

• Example: Two PEPs at the ends of a satellite link which
terminate TCP connections at each PEP and use a third
connection between the two PEPs.

11/10/99 6

Types of PEPs (Cont.)

• PEPs can be classified by their degree of transparency:

– A PEP implementation may require changes to neither, one or both
of the end systems of a connection.

– Transparency is an issue at multiple levels: the network layer, the
transport layer, the application layer and the user.

• PEPs can be classified by their their degree of interference with the
end to end semantics of a connection.

– Related to, but not the same as, transparency.

– Not in the draft yet.

11/10/99 7

PEP Mechanisms

• A PEP may use one or more of the following mechanisms to try to
improve performance:

– ACK spacing

– ACK regeneration (not in the draft yet)

– Local acknowledgements

– Local retransmissions

– Tunnels to control routing of packets

– Header compression

– Payload compression

– Priority based multiplexing

– Others?

11/10/99 8

PEP Examples

• The draft includes several examples of environments where PEPs are
used:

– Satellite VSAT networks

– [Mobile] Wireless WAN (W-WAN) networks

– Wireless LAN (W-LAN) networks

– Wireless Application Protocol (WAP) networks (not in the draft
yet)

• The examples are provided to try to give substance to the various PEP
types and mechanisms, making them easier to understand.

• Many references to PEP implementations are included to provide
additional detail. Every type and mechanism is backed up by at least
one reference (hopefully).

11/10/99 9

PEP Implications

• Many of the implications of using PEPs relate to the end to end
argument.

– The use of a PEP should never be transparent to the user.

• When “user” is defined to include the network administrator,
most existing PEP implementations are non-transparent to the
user.

– PEPs are primarily used today in an intranet or “last hop”
Internet context.

– The implementation of a PEP should allow user control over which
connections are “PEPed” and which connections are not “PEPed”.

• Some, but definitely not all, existing PEP implementations
provide this sort of user control.

11/10/99 10

PEP Implications (Cont.)

• Re the end to end security argument:

– Since PEPs need to see inside IP packets and, in some
implementations, generate IP packets on behalf of an end system,
PEPs cannot be used with end to end IPsec.

• Using end to end IPsec prevents the use of PEPs.

• The desire to use PEPs keeps a user from using end to end
IPsec.

– Tunneled IPsec could be used with PEPs as the tunnel end points.

• Requires the PEPs to be trusted by the user.

• In general, security mechanisms at or above the transport layer
(e.g. TLS or SSL) can be used with PEPs.

– Multi-layer IPsec? [draft-zhang-ipsec-mlipsec-00.txt]

11/10/99 11

PEP Implications (Cont.)

• Re the end to end fate sharing argument:

– Most PEP implementations keep state.

• A failure of a PEP implementation which only keeps “soft”
state may support failover to alternate paths.

• A failure of a PEP implementation which keeps “hard” state
(e.g. state required to support split connections) will generally
cause a connection to fail even though an alternate end to end
path exists for the connection.

– Note that “hard” state is not strictly related to the use of
split connections.

– Sometimes coincidentally and sometimes by design, PEPs
are often positioned where no alternate path exists.

11/10/99 12

PEP Implications (Cont.)

• Re the end to end reliability argument:

– A PEP implementation may affect the end to end reliability of a
connection, especially if the PEP interferes with application layer
acknowledgements.

• Applications should not rely on lower level (e.g. TCP)
acknowledgements to guarantee end to end delivery.

• TCP PEPs generally do not interfere with application layer
acknowledgements.

• Re the end to end failure diagnostics argument:

– Using a PEP potentially interferes with the use of end to end
failure diagnostics tools.

11/10/99 13

PEP Implications (Cont.)

• Other implications:

– Using PEPs can place constraints on the routing topology:

• Suboptimal routing might be required to force traffic to go
through a PEP;

• Tunnels might be required to force traffic to go through a PEP,
especially in an asymmetric routing environment.

– Using PEPs with mobile hosts might require PEP state to be
handed off as the hosts move.

– Others?

11/10/99 14

Status

• The -00 draft was released just prior to the Oslo IETF meeting.

– We received some good input from several people.

• The -01 draft was submitted prior to this meeting but just missed the
submission deadline.

– The draft will be released right after the D.C. meeting.

– The draft incorporates some, but not all, of the comments received
so far.

• The plan is to release a -02 draft as quickly as possible after -01 draft,
incorporating all of the rest of the comments.

• We need help filling in some of the sections of the draft.

11/10/99 15

Changes in the -01 Draft

• Split the “types of PEPs” and “PEP mechanisms” section into separate
sections for clarity.

• Tried to clarify various sections:

– End to end related issues;

– Terminology:

• Tried to make layer versus protocol distinctions more accurate;

• Tried to make TCP versus application distinctions more
accurate;

• Changed uses of “proxy” to “PEP” to eliminate ambiguity
(with respect to other uses of the term “proxy”).

• Added some new mechanisms such as prioritizing access to resources.

11/10/99 16

Soliciting Input

• We are current soliciting input for:

– Terminology refinement;

– Additional PEP types and/or mechanisms which should be
included in the draft. Some ideas already suggested which need
flushing out include: ACK regeneration, partial ACK mechanisms,
priority based multiplexing and protocol booster mechanisms.

– Additional example environments where PEPs are used.

• However, we are not trying to describe every PEP
implementation in existence. So, any proposed additions
should illustrate types or mechanisms of PEPs other than those
illustrated by the existing examples.

• Need someone to flush out the section on WAP.

11/10/99 17

Soliciting Input (Cont.)

• Most importantly, we are current soliciting input on additional
implications of using PEPs. Some ideas already suggested which need
to be flushed out (or need additional flushing out) include:

– Scalability

– Failure diagnostics

– Multi-homing environments

– QoS transparency

